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Directing nonlinear dynamic systems to any desired orbit
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A method of controlling arbitrary nonlinear dynamic systems,dx/dt5F(x,t) (xPRn), is presented. It is
proved that the system can be entrained to any arbitrary ‘‘goal’’ dynamicsg(t) by use of the open-loop action
and adjusting the control parameter at the same time. Examples of some entrainment ‘‘goals’’ are given for the
Lorenz and the Ro¨ssler systems. The basins of entrainment are also established for the Lorenz, Ro¨ssler, and
Duffing systems. Numerical studies show that this method works as well as the closed-loop control method
@Physica D85, 1 ~1995!; Phys. Lett. A213, 148 ~1996!#. @S1063-651X~97!04701-6#
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I. INTRODUCTION

The open-loop control method was first introduced
Hübler @1# and used by Hu¨bler and Lüscher@2,3# in studies
involving the logistic map and nonlinear damped oscillato
It was then developed towards complex dynamics with m
dynamic attractors by Jackson@4–6#. Its aim is to achieve the
desired global dynamics for dynamical systems that are
necessarily chaotic, provided that some restrictions on
initial conditions that stand for the values of the state va
ables at the time when control is initiated and on the tar
dynamics are met. Though the control~perturbation! may be
large and a system model is required, obtaining any dyn
ics by this approach is attractive compared to the only
stable periodic orbits stabilized by the Ott, Grebogi, a
Yorke method@7#, by a delayed feedback approach@8#, or by
a linear feedback control@9#, and compared to a series o
new dynamics available by a self-interaction method@10#, in
which, although many dynamics are possible, the resul
dynamics cannot be arbitrary.

Many of the important dynamic models consist of syste
of ordinary differential equations,

ẋ5F~x,t ! ~xPRn!. ~1!

If one wants to entrain the solution of the system to so
‘‘goal’’ behavior g(t) in order to obtain

lim
t→`

@x~ t !2g~ t !#50 ~2!

assuming that the dynamics is of the form

ẋ5F~x,t !1K~g,t !S~ t ! ~3!

it follows thatK(g,t) must satisfy@4#

K~g,t !5ġ2F~g,t !, ~4!

whereS(t) is a ‘‘switching function’’, S(t)50 (t,t0) and
e.g., S(t)51 ~t>t0!. The global region of phase space
which the initial conditionx~0! yields solutions of Eq.~3!
551063-651X/97/55~1!/199~6!/$10.00
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satisfying Eq.~2! is referred to as the basin of entrainme
BE(g). The control equation~3! is only initiated whenx~0!
PBE(g) ~which definest5t0! after which the state of the
system does not need to be monitored to ensure con
Therefore,g(t) cannot be implemented freely. These limit
tions then deteriorate this attractive controlling method.

In order to remove the limitations, Jackson and Gro
@11# present an approach that can entrain dynamical syst
to any desired orbits~goal dynamics! by using the open-plus
closed-loop~OPCL! control method, that is

K~g,t !5ġ2F~g,t !1C~g,t !@g~ t !2x~ t !#, ~5!

whereC(g,t)[g(t)2x(t)] is a linear closed-loop control
Chen @12# gives out some numerical studies of the OPC
control method. In this paper, we present a method of c
trolling arbitrary nonlinear dynamics systems. It is prov
that this method can implement the entrainment of arbitr
goal dynamicsg(t) by using the open-loop action and a
justing the control parameter, the open-plus-adjusting par
eter ~OPAP!, at the same time. The effect of this OPA
method is as effective as the OPCL control method@11,12#.
Numerical studies show that the OPAP method can imp
ment the entrainment from one system to another system
the entrainment in which the goal dynamics is a hig
dimensional torus. The basins of entrainment are also es
lished for the Lorenz, Ro¨ssler, and Duffing systems.

II. THE OPEN-PLUS-ADJUSTING PARAMETER „OPAP…
CONTROL METHOD

If we adjust the parameter of Eq.~1! as

p~ t !5 p̄2e@x~ t !2g~ t !# ~6!

then Eq.~3! becomes

ẋ5F„x~ t !,p~ t !…1S~ t !@ ġ2F~g,p̄!#, ~7!

wherep̄ is the nominal value of parameterp(t) ande is the
control variable. Let
199 © 1997 The American Physical Society
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u~ t !5x~ t !2g~ t ! ~8!

then we have

du~ t !

dt
5F„g~ t !1u~ t !,p~ t !…2F„g~ t !,p̄…. ~9!

u(t) is asymptotically stable if all the eigenvalues of t
Jacobian matrix of Eq.~9! have negative real parts. Becau
the goal dynamicsg(t) needs to be located in the converge
region of the original dynamics, we can utilize the cont
variablee to adjust the convergent region such that the
lectedg(t) is guaranteed in the modified convergent regio
For the three-dimensional system, the Jacobian matrix of
~9! is J5(ai j ). By Routh-Hurwitz stability criterion, intro-
duced by Jackson@4#, all the eigenvalues of the Jacobia
matrixJ have negative real parts if three inequality equatio

a1.0,

a3.0, ~10!

a1a22a3.0

are satisfied, wherea1, a2, and a3 are coefficients of the
characteristic polynomiall31a1l

21a2l1a3, determined
from the Jacobian matrixJ. Now we use the Lorenz, Ro¨ssler,
and Duffing systems as examples to show that arbitrary
namics can be obtained by the control inputs proposed in
~7!.

For the Ro¨ssler system

ẋ52y2z,

ẏ5x1ay, ~11!

ż5b1z~x2c!,

we take the goal dynamics to be

g~ t !5~gx ,gy ,gz!5~sint, 21cosl21t, sinl22t !, ~12!

where the parametera5b50.2, c54.5, and the frequency
l51.839 286 755 21, which is the real root of the equat
l32l22l2150. Becausel is an irrational number, the ra
tios of frequency between the three components ofg(t) are
also irrational. This is different from the examples given
Ref. @12# in which the ratios are all rational. Now we adju
the parametera as follows:

a~ t !5ā2e@y~ t !2gy#; ~13!

the control equation~7! becomes

ẋ52y2z1S~ t !~ ġx1gy1gz!,

ẏ5x1a~ t !y1S~ t !~ ġy2gx2āgy!, ~14!

ż5b1z~x2c!1S~ t !@ ġz2b2gz~gx2c!#.

The Jacobian matrix corresponding to Eq.~9! is
t
l
-
.
q.

s

y-
q.

n

J5S 0
1
gz

21
ā2egy

0

21
0

gx2c
D . ~15!

According to Eq.~10!, we let

e5
11ā

gy
. ~16!

For avoiding the variation of parameters too large, we
a(t)5ā when ua(t)u.5.0, that is, we let the system ru
freely at this time. The control result is as in Fig. 1, whe
t<11 denotes the free motion of the system, 11,t<20 the
effect of adding open-loop actionK(g,t), and t.20 the ef-
fect of the OPAP control method. From~a!, ~b!, and ~c! of
Fig. 1, we can see that it cannot be entrained to goal dyn
ics by adding only open-loop control. The entrainment c
be implemented only after adding open-loop action and
justing parameters at the same time. From~d! and~e! of Fig.
1, we can see that, because the frequency is irrational,
trajectory fills the region of goal dynamics.

In the second example we consider the Lorenz model

ẋ5s~y2x!,

ẏ5gx2y2xz, ~17!

ż5xy2bz,

wheres510, g528, andb5 8
3. In order to illustrate the ar-

bitrariness of goal dynamics, we take the Ro¨ssler system as
our goal dynamics, where the parameters of the Ro¨ssler sys-
tem a5b50.2 andc55.7. Because there are interactio
among the variables of goal dynamicsx, y, andz this goal
dynamics is much more difficult than that of Refs.@11,12#.
Now we adjust two parameters of the Lorenz model,s, g,

s~ t !5s̄2e1@x~ t !2gx#,
~18!

g~ t !5ḡ2e2@y~ t !2gy#,

wheres̄ andḡ are the nominal values of parameterss andg
respectively,gx andgy are the variables of the Ro¨ssler sys-
tem x andy. According to Eq.~10!, we let

e15H 23

~gy2gx!
if ugy2gxu.0.01

0 otherwise,
~19!

e25H 9

gx
if ugxu.0.01

0 otherwise.

In order to avoid the too large a variation of parameters,
let s(t)510 whenusu.20 andg(t)528 whenugu.50. Figure
2 is the control result wheret<20 denotes the free motion o
the system, 20,t<40 the effect of adding open-loop actio
K(g,t), t.40 the effect of the OPAP control method.~d! and
~e! of Fig. 2 denote the control results at different contr
initial values; we can see that they all go to the attractor
the Rössler system, so the OPAP control method is indep
dent of the ‘‘switching on’’ time.~f! of Fig. 2 denotes the
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FIG. 1. Response of a controlled Ro¨ssler sys-
tem with goal dynamics ~sint, 21cosl21t,
sinl22t! where l51.839 286 755 21.t<11 de-
notes the free motion of the system; 11,t<20
the effect of adding open-loop action;t.20 the
effect of the OPAP method.~a! x(t);t; ~b!
y(t);t; ~c! z(t);t; ~d! the asymptotic dynamics
in (x,y) plane; ~e! the asymptotic dynamics in
(x,z) plane.
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control process in phase space (x,y). It is clear that first the
system locates at the Lorenz attractor, then it oscilla
around the Lorenz attractor, and finally it rests on the Ro¨ssler
attractor.

In the last example we use the Duffing equations in
form

ẋ5y,
~20!

ẏ52gy2ax2x3,

and take the goal dynamics to begx5B sin(vt),
gy5Bv cos(vt), wherea51, g50.1, andB5v53. This is
a nonchaotic system. Making the similar analysis with
above two examples, we let

a~ t !5ā2e1@x~ t !2gx#,
~21!

g~ t !5ḡ2e2@y~ t !2gy#,

e15H 2313gx
2

gx
if ugxu.0.01

0 otherwise,
~22!

e25H ḡ24.2

gy
if ugyu.0.01

0 otherwise
s

e

e

and leta(t)51 when ua(t) u.10, andg(t)50.1 whenug(t) u
.5.0. Figure 3 is our control result. Obviously, the system
entrained to goal dynamics.

III. BASINS OF ENTRAINMENT

In this section we explore the problem of determining t
size of the basin of entrainment BE(gut0). To study this
problem, we expandF„g1u,p(t)… to obtain the nonlinear
generalization of Eq.~9!

dui
dt

5
]Fi

]gj
uj1

]Fi

]pj
~2euj !1

1

2

]2Fi

]gj]gk
ujuk

1
1

3!

]3Fi

]gj]gk]gl
ujukul1••• . ~23!

In all examples considered in this studyF(x,t) is at most a
third-degree polynomial, so there are no additional terms
Eq. ~23!.

For the Lorenz model Eq.~17!,

u̇152@s1~gy2gx!e1#u11su2 ,

u̇25~g2gz!u12~11gxe2!u22gxu32u1u3 ,

u̇35gyu11gxu22bu31u1u2 . ~24!

In order to get the Lyapunov function for Eq.~24!, we study
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FIG. 2. The entrainment from the Loren
model to the Ro¨ssler system.t<20 denotes the
free motion of the system; 20,t<40 the effect of
adding open-loop action; andt.40 the effect of
OPAP method. ~a! x(t);t; ~b! y(t);t; ~c!
z(t);t; ~d! and ~e! the effect of the OPAP
method at different initial points;~f! the asymp-
totic dynamics in (x,z) plane.
rain-

in-

er a
1

2

d

dt
~ru1

21u2
21u3

2!52~11gxe2!~au12u2!
2

2b~bu12u3!
2 ~25!

provided thatṙ50 and~r,a,b! satisfy

2a~11gxe2!5sr1g2gz ,

2bb5gy , ~26!

~11gxe2!a
21bb25r@s1~gy2gx!e1#.

One finds that these conditions require that

b5
gy
2b

,

a511~gy2gx!
e1
s

6S F11~gy2gx!
e1
s G2

2

bb21~g2gz!F11~gy2gx!
e1
s G

11gxe2
D 1/2

,

~27!

r5
~11gxe2!a

21bb2

s1~gy2gx!e1
.

If we select e1 and e2 so that 11gxe2.0 and
s1(gy2gx)e1.0, we haver.0 and Eq.~25! is less than 0.
For reala, and ṙ50,
F11~gy2gx!
e1
s G22

gy
2

4b
1~g2gz!F11~gy2gx!

e1
s G

11gxe2
.0,

~28!
bġy2a2gxe25saġz1re1~ ġy2ġx!.

Therefore we have the following result:ru 1
21u 2

21u 3
2 can

be used as the Lyapunov function and ensures global ent
ment provided that Eqs.~27! and ~28! are satisfied.

For the Ro¨ssler system, we implement the goal entra
ment in the first example by only adjusting parametera. In
order to discuss the basin of entrainment, now we consid
general situation and adjust the parameters of systema, b,
andc:

a~ t !5ā2e1@y~ t !2gy#,

b~ t !5b̄2e2@x~ t !2gx#, ~29!

c~ t !5 c̄2e3@z~ t !2gz#.

We have

u̇152u22u3 ,

u̇25u11~a2e1gy!u2 , ~30!

u̇35~gz2e2!u11~gx2c1gze3!u31u1u3 .
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FIG. 3. The Duffing equation is used to illus
trate the entrainment of the nonchaotic syste
where the goal dynamics is~3 sin 3t, 9 cos 3t!.
t<10 denotes the free motion of the system;
,t<40 the effect of adding open-loop action
t.40 the effect of the OPAP method.~a! x(t);t;
~b! y(t);t; ~c! the asymptotic dynamics in phas
space (x,y).
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It will produce a simple Lyapunov function

1

2

d

dt
~u1

21u2
21u3

2!5~gz2e221!u1u32~e1gy2a!u2
2

2~c2gx2u12e3gz!u3
2. ~31!

If we let e1, e2, and e3 satisfy e25gz21, e1gy2a.0, and
c2gx2u12e3gz.0, then 1

2 (d/dt)(u 1
21u 2

21u 3
2),0. So

the basin of entrainment of the Ro¨ssler system is global. In
our first example we only adjust parametera, so it is not
global. Why can we implement the entrainment of goal d
namics? That is because we can select the control tim
open-loop action until the system enters the convergent
gion where the eigenvalues of Eq.~15! are negative. Then we
add the OPAP method so it can let the system go to the
dynamics.

For the Duffing equation, we have

u̇15u2 ,
~32!

u̇25~e1gx2123gx
2!u12~g2e2gy!u223gxu1

22u1
3.

From Ref.@13# we know that Eq.~32! can be written as the
form ü1gu̇1dV(u,c)/du5F(t), whereV(u,c) is a nonlin-
ear potential function

dV

du
5~113gx

22e1gx!u13gxu
21u3. ~33!

By dV/du50, we get three extreme points

u150,

u2,352 3
2gx6Ae1gx212 3

4gx
2. ~34!

If we select a suitablee1 so that
-
of
e-

al

e1gx212 3
4gx

2,0, ~35!

u150 is only an extreme point and

d2V

du2
5113gx

22e1gx.0. ~36!

So u150 is a minimum point. We can let the system go
the attractor ofu150 at any point of phase space and imp
ment the entrainment of goal dynamics. In fact, our last
ample is just a special case in which Eq.~22! satisfies Eq.
~35!.

IV. CONCLUSION

In this study we have shown that the OPAP cont
method works as well as the OPCL control method. It c
implement the entrainment of goal dynamics which can
be implemented by only open-loop action. In our cont
process, we first switch on the open-loop control@S(t0)51#
and find that it cannot implement the entrainment of g
dynamics. Then we adjust the control parameters of the
tem to some suitable values so that the system is entraine
goal dynamics. The example of the Ro¨ssler system illustrates
that the OPAP control method can implement the entra
ment of goal dynamics whose ratios of frequency are irra
nal and the example of the Lorenz model illustrates that
OPAP control method can implement the entrainment
tween different attractors of different systems. In Sec. III t
extent of the basins of entrainment for the Ro¨ssler and Duf-
fing systems is shown to be global~the entire phase space!
provided the control parameters be selected suitably. For
Lorenz model, the basin of entrainment is global only wh
Eqs.~27! and ~28! are satisfied.
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