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Directing nonlinear dynamic systems to any desired orbit
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A method of controlling arbitrary nonlinear dynamic systemz/dt=F(x,t) (xe R"), is presented. It is
proved that the system can be entrained to any arbitrary “goal” dynagfigsby use of the open-loop action
and adjusting the control parameter at the same time. Examples of some entrainment “goals” are given for the
Lorenz and the Resler systems. The basins of entrainment are also established for the LoreskgrRand
Duffing systems. Numerical studies show that this method works as well as the closed-loop control method
[Physica D85, 1 (1999; Phys. Lett. A213 148(1996]. [S1063-651X97)04701-9

PACS numbgs): 05.45:+b, 03.20+i, 46.10+2

I. INTRODUCTION satisfying Eq.(2) is referred to as the basin of entrainment
BE(g). The control equatioii3) is only initiated whenx(0)

The open-loop control method was first introduced byeBE(g) (which definest=ty) after which the state of the
Hubler [1] and used by Holer and Lischer[2,3] in studies system does not need to be monitored to ensure control.
involving the logistic map and nonlinear damped oscillators Therefore g(t) cannot be implemented freely. These limita-
It was then developed towards complex dynamics with manyions then deteriorate this attractive controlling method.
dynamic attractors by Jacksph—6]. Its aim is to achieve the In order to remove the limitations, Jackson and Grosu
desired global dynamics for dynamical systems that are ndtl1] present an approach that can entrain dynamical systems
necessarily chaotic, provided that some restrictions on thto any desired orbitgyoal dynamicsby using the open-plus-
initial conditions that stand for the values of the state vari-closed-loop(OPCL) control method, that is
ables at the time when control is initiated and on the target )
dynamics are met. Though the conttpkrturbation may be K(g,t)=g—F(g,t) +C(g,t)[g(t) —x(t)], 5
large and a system model is required, obtaining any dynam- ) )
ics by this approach is attractive compared to the only unWhere C(g,t)[g(t)—x(t)] is a linear closed-loop control.
stable periodic orbits stabilized by the Ott, Grebogi, andChen[12] gives out some numerical studies of the OPCL
Yorke method 7], by a delayed feedback approd@, or by con_trol met_hod. In th!s paper, we present a methpd of con-
a linear feedback contrdl], and compared to a series of trollmg. arbitrary nonl|.near dynamics systems. It is prqved
new dynamics available by a self-interaction methba, in that this mef[hod can |mp_lement the entralnmer_lt of arbitrary
which, although many dynamics are possible, the resulting0@l dynamicsg(t) by using the open-loop action and ad-

dynamics cannot be arbitrary. Justing the control parameter, the open-plus-adjusting param-
Many of the important dynamic models consist of systemseter (OPAP), at the same time. The effect of this OPAP
of ordinary differential equations, method is as effective as the OPCL control methbd, 12.
Numerical studies show that the OPAP method can imple-
x=F(x,t) (xeR"). 1) ment the entrainment from one system to another system and

) . the entrainment in which the goal dynamics is a high-
If one wants to entrain the solution of the system to somejimensional torus. The basins of entrainment are also estab-

“goal” behavior g(t) in order to obtain lished for the Lorenz, Rssler, and Duffing systems.
lim[x(t)—g(t)]=0 2
- Il. THE OPEN-PLUS-ADJUSTING PARAMETER (OPAP)

CONTROL METHOD

ing that th ics is of the fi
assuming that the dynamics is of the form If we adjust the parameter of E€1) as

x=F(x,t)+K(g,t)S(t) 3 p(t)=p—e[x(t)—g(t)] 6)
it follows thatK(g,t) must satisfy[4] then Eq.(3) b
en Eq.(3) becomes
K(g,)=g—F(g,t), 4
(9.H)=g-F(g.) @) x=F(x(1),p(1))+S(H[g—F(g.p)], )

where S(t) is a “switching function™, S(t)=0 (t<ty) and o
e.g., S(t)=1 (t=ty). The global region of phase space in wherep is the nominal value of parametp(t) ande is the
which the initial conditionx(0) yields solutions of Eq(3) control variable. Let
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u(t)=x(t)—g(t) (8) 0 -1 -1
J=| 1 a—eg 0 15
then we have g, 0 Y g.—C 19
du(t) — According to Eq.(10), we let
S =FEO U pO)-FGDB). O 910 Eal1o _
_ l+a 16
u(t) is asymptotically stable if all the eigenvalues of the €~ gy (16

Jacobian matrix of Eq9) have negative real parts. Because o o

the goal dynamicg(t) needs to be located in the convergentFor avoiding the variation of parameters too large, we let
region of the original dynamics, we can utilize the control@(t)=a when |a(t)|>5.0, that is, we let the system run
variable € to adjust the convergent region such that the seffeely at this time. The control result is as in Fig. 1, where
lectedg(t) is guaranteed in the modified convergent region.t<11 denotes the free motion of the system<1&£20 the

For the three-dimensional system, the Jacobian matrix of Effect of adding open-loop actidt(g,t), andt>20 the ef-

(9) is J=(a;;). By Routh-Hurwitz stability criterion, intro- 1€Ct Of the OPAP control method. Frofa), (b), and(c) of
duced by Jacksofd], all the eigenvalues of the Jacobian Flg. 1, we can see that it cannot be entrained to goal dynam-

matrix J have negative real parts if three inequality equationdCS by adding only open-loop control. The entrainment can
be implemented only after adding open-loop action and ad-

a;>0, justing parameters at the same time. Fr@hnand(e) of Fig.
1, we can see that, because the frequency is irrational, the
a;>0, (10) trajectory fills the region of goal dynamics.
In the second example we consider the Lorenz model
alaz_a3>0 X:O'(y_X),

are satisfied, whera,, a,, and a; are coefficients of the U= vX— Y — X2 1
characteristic polynomiak3+a1)\23+ a,\+a;, determined y=my ’ an
from the Jacobian matriX. Now we use the Lorenz, Reler, 7=xy—bz

and Duffing systems as examples to show that arbitrary dy-
namics can be obtained by the control inputs proposed in Eqvhere =10, y=28, andb=2{. In order to illustrate the ar-

(7). ) bitrariness of goal dynamics, we take thesRler system as
For the Rasler system our goal dynamics, where the parameters of thesRo sys-
) tem a=b=0.2 andc=5.7. Because there are interactions
X=-y—z among the variables of goal dynamixsy, andz this goal
_ dynamics is much more difficult than that of Refé1,12.
y=x+ay, (1) Now we adjust two parameters of the Lorenz modely,
z=b+z(x—c), o(t)=o—e[x(1) —0y],
_ (18
we take the goal dynamics to be y()=y—ely(t)—gyl,

9(t)=(gy.Qy,g,) = (sirt, 2+ cos\ ~1t, sim ~2t), (12) whereo andy are the nominal values of parameterandy
Y respectivelyg, andg, are the variables of the Reler sys-
where the parameteaa=b=0.2, c=4.5, and the frequency temx andy. According to Eq(10), we let
A=1.839 286 755 21, which is the real root of the equation 23

A3—\2—\—1=0. Because\ is an irrational number, the ra- — 2% it |g,—g,>0.01
tios of frequency between the three componentg(of are €1=1 (9y—09x) v
also irrational. This is different from the examples given in 0 otherwise,
Ref.[12] in which the ratios are all rational. Now we adjust (19
the parametea as follows: 9 |
_ g— if |gx|>0.01
a(t)=a—ey(t)—gyl; (13 i OX otherwise.
the control equatiori7) becomes In order to avoid the too large a variation of parameters, we
. . let o(t) =10 when|o|>20 andy(t) =28 when|4>50. Figure
x=—y=z+S(1)(9x+ gyt 9y), 2 is the control result where<20 denotes the free motion of
) ) L the system, 2€t<40 the effect of adding open-loop action
y=x+a(t)y+S(t)(gy— gx—agy), (14  K(g,t), t>40 the effect of the OPAP control methdd) and
(e) of Fig. 2 denote the control results at different control
z=b+2z(x—c)+S(t)[g,—b—g,gc—C)]. initial values; we can see that they all go to the attractor of

the Rasler system, so the OPAP control method is indepen-
The Jacobian matrix corresponding to E9). is dent of the “switching on” time.(f) of Fig. 2 denotes the
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(b)

FIG. 1. Response of a controlled sber sys-
tem with goal dynamics (sint, 2+cosx™%t,
sinA2t) where A=1.839 286 755 21t<11 de-
notes the free motion of the system; <1120
the effect of adding open-loop actioti;>20 the
effect of the OPAP method(a) x(t)~t; (b)

_ y(t)~t; (c) z(t) ~t; (d) the asymptotic dynamics
-2 - . L -8 L i L in (x,y) plane; (e) the asymptotic dynamics in
0 20 40 60 80 -4 0 4 8 (x,2) plane.

(e)

control process in phase spacey(). It is clear that first the and leta(t)=1 when|a(t)|>10, andy(t) =0.1 when|y(t)|
system locates at the Lorenz attractor, then it oscillates>5.0. Figure 3 is our control result. Obviously, the system is
around the Lorenz attractor, and finally it rests on thesker  entrained to goal dynamics.
attractor.

In the last example we use the Duffing equations in the lIl. BASINS OF ENTRAINMENT

form
In this section we explore the problem of determining the

X=Y, size of the basin of entrainment B¢,). To study this
(20) problem, we expandF(g+u,p(t)) to obtain the nonlinear

Y= — yy— ax—x3, generalization of Eq(9)

d take th | dynamics to bg,=B sin(wt) du, _ JF, +(9F‘( )+1 F
and take the goal dynamics to b@,=B sin(wt), = Ut ——(—eup)+ 5 — Uj Uy
gy=Bw cos(wt), wherea=1, y=0.1, andB=w=3. This is dt  Jg; P 2 9999k
a nonchaotic system. Making the similar analysis with the 1 &F
above two examples, we let + 31 m UjuU + - (23
a(t)=a— e[ X(1) ~ gy, In all examples considered in this stullyx,t) is at most a
s (21) third-degree polynomial, so there are no additional terms to
Y()=y—ely(t)—gyl, Eq. (23).
For the Lorenz model Eq17),
—3+3g2 .
I if |g,/>0.01 up=—[o+(gy— gy €1]us+ouy,
1~ X

herwi 1
0 otherwise, U,=(y—9g,)u;—(1+g,€)Uy,— gy Uz—UjUsg,
(22)
€= y
0 otherwise In order to get the Lyapunov function for E@4), we study
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LIU ZONGHUA AND CHEN SHIGANG 55

(b)

80

40

-40

2a(1+0y€e)=0p+y—0y,
Zﬁb:gyv

(1+gx62)a2+bﬁzzp[0+(gy_gx)61]-

20

gse-

iSe-loop
d-adjust paramet

One finds that these conditions require that

€1
a:1+(gy_gx) ;i

If we select ¢

bB2+ (y=9»

_9Y
B_Zb’

€1
1+(gy_gx) ;

€1
1+(gy_gx) ;

1+ ngz

(1+ gxez)az-i— bﬁz

p:

and e

0'""(gy_gx)fl

that
o+(9y—0,) &>0, we havep>0 and Eq.(25) is less than 0.
For reala, andp=0,

(pui+ud+ud)=—(1+gye)(au;—Uy)?

2

1/2

(25

(26)

(27)

g,6,>0 and

20

1+(gy

FIG. 2. The entrainment from the Lorenz
model to the Rssler systemt<20 denotes the
free motion of the system; 2t<40 the effect of
adding open-loop action; artd>40 the effect of
OPAP method. (@ x(t)~t; (b) y(t)~t; (c)
z(t)~t; (d) and (e) the effect of the OPAP
method at different initial points(f) the asymp-
totic dynamics in X,z) plane.

@

r

g2
_y J—
€1 2 4b+(7 gz)
— 0y e

€1
1+(gy_gx) ;

1+ gXEZ

>0,

(28)
ﬁgy— azgxez= Uagz+ pel(gy_ gx)

Therefore we have the following resultpu?+u3+u3 can
be used as the Lyapunov function and ensures global entrain-
ment provided that Eq$27) and (28) are satisfied.

For the Rasler system, we implement the goal entrain-
ment in the first example by only adjusting parametein
order to discuss the basin of entrainment, now we consider a
general situation and adjust the parameters of systen

andc:

We have

a(t)=a—e[y(t)—gyl,

b(t)=b— e,[X(t) — gy], (29)
c(t)=c— ezl z(t) —g,].

Ulz —Ux—Uus,
U=u;+(a— €9y)up, (30

U3=(g,— €2)U;+ (gx— C+gz€3)Uz+UsUs.
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3 5 i FIG. 3. The Duffing equation is used to illus-
-4 -10 I ML trate the entrainment of the nonchaotic system,
() 70 b 0 10 20 30 40 50 60 70 where the goal dynamics i8 sin &, 9 cos 3).
(0) t t=<10 denotes the free motion of the system; 10
10 <t=<40 the effect of adding open-loop action;
8 - t>40 the effect of the OPAP metho@) x(t) ~t;
2 7 (b) y(t)~t; (c) the asymptotic dynamics in phase
M ] space K,Y).
- 0 .
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(c)
It will produce a simple Lyapunov function €,0,—1— §g§<0, (35)
1d 5 2, 0 2 u,=0 is only an extreme point and
7 gp (Uit U2+ uz)=(9,— &2~ Dusus—(e9y—a)u; !
2 2y
—(C—0x— U1~ €39,)U5. (31) W=1+3g§—elgx>0. (36)

If we let €, &, and e; satisfy e,=9,—1, elzgy—a>0, and
C—0y—U;—€39,>0, then 3(d/dt)(uZ+u3+u3)<0. So  Sou;=0 is a minimum point. We can let the system go to
the basin of entrainment of the Baler system is global. In the attractor of1;=0 at any point of phase space and imple-
our first example we only adjust parametgrso it is not ment the entrainment of goal dynamics. In fact, our last ex-
global. Why can we implement the entrainment of goal dy-ample is just a special case in which E82) satisfies Eq.
namics? That is because we can select the control time @B85).
open-loop action until the system enters the convergent re-
gion where the eigenvalues of E45) are negative. Then we
add the OPAP method so it can let the system go to the goal
dynamics. In this study we have shown that the OPAP control
For the Duffing equation, we have method works as well as the OPCL control method. It can
implement the entrainment of goal dynamics which cannot
be implemented by only open-loop action. In our control

IV. CONCLUSION

Up=uy, process, we first switch on the open-loop conf®(ty) =1]
) ) . 3 (32 and find that it cannot implement the entrainment of goal
Up= (€105~ 1—305)uUs— (y— €20y)U,—30,U7 — U7. dynamics. Then we adjust the control parameters of the sys-

tem to some suitable values so that the system is entrained to

goal dynamics. The example of the $&ter system illustrates
From Ref.[13] we know that Eq(32) can be written as the that the OPAP control method can implement the entrain-
formu+yu+dV(u,c)/du=F(t), whereV(u,c) is anonlin-  ment of goal dynamics whose ratios of frequency are irratio-
ear potential function nal and the example of the Lorenz model illustrates that the
OPAP control method can implement the entrainment be-
tween different attractors of different systems. In Sec. Il the
extent of the basins of entrainment for thesRier and Duf-
fing systems is shown to be glob@he entire phase space
provided the control parameters be selected suitably. For the
By dV/du=0, we get three extreme points Lorenz model, the basin of entrainment is global only when

Eqgs.(27) and (28) are satisfied.

dv 2 2,3
m:(1+39x—619x)u+39xu +u°. (33

ul:O,
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